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ABSTRACT: During the DOE ARM TRACER IOP spanning June to September 2022, two

fixed ARM sites and a mobile team concurrently sampled the air mass heterogeneity across sea

and bay-breeze fronts around the greater Houston metropolitan region. Here, we quantify the

spatiotemporal variability between maritime (coastal/bay side of breeze fronts) and continental

(inland side of breeze fronts) air masses over 15 IOP days characterized by strong sea breeze

forcing. We analyze environmental profile data from 177 radiosondes and use S- and C-band radar

data to track and quantify the variability in attributes of more than 2300 shallow and transitioning

cells across different air masses. Composite analysis of environmental profiles indicates that

during early afternoon, the sea-breeze maritime air mass exhibits lower CAPE than the bay-breeze

maritime air mass. As the sea breeze advances inland with time, CAPE within the maritime air mass

exceeds that of the continental air mass to the north of the breeze fronts. In general, maritime cells

have larger mean composite reflectivity and cell widths compared to continental cells; however,

the response varies between shallow and transitioning cells. Mean composite 20-dBZ echo-top

heights, however, are similar across air masses for both shallow and transitioning cells. The

continental and maritime inflow air mass for transitioning cells has significantly different mean

values for mixed-layer entrainment CAPE, lifted condensation level, level of free condensation,

boundary layer depth, and diluted equilibrium level. For shallow cells, only total precipitable water

shows a significant difference.
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SIGNIFICANCE STATEMENT: The greater Houston metropolitan area is a natural laboratory25

for understanding the individual impacts of background meteorology and aerosols on convective26

clouds. Due to its proximity to the Gulf coast and Galveston Bay, the Houston region experiences27

a diurnal precipitation cycle in the summer, driven by convection triggered from sea and bay-28

breeze fronts. These fronts act as a boundary between air masses with distinct thermodynamic and29

environmental characteristics. Convergence along these fronts, and interactions between storm30

outflow and the fronts, facilitate convection initiation in different mesoscale air masses. This study31

quantifies the heterogeneity among these air masses while investigating their influence on cloud32

microphysics. We find that the effect of air mass heterogeneity is more pronounced for the bulk33

microphysical properties in shallow clouds.34

1. Introduction and background35

Deep moist convection is a pivotal component of the global climate system, facilitating the36

vertical redistribution of moisture, heat, momentum, and pollutants. However, the ingredients37

responsible for triggering deep moist convection initiation or “shallow-to-deep” transition are still38

less clear (Derbyshire et al. 2004; Khairoutdinov and Randall 2006; Waite and Khouider 2010;39

Zhang and Klein 2010; Genio et al. 2012; Hohenegger and Stevens 2013; Nelson et al. 2022;40

Morrison et al. 2022; Giangrande et al. 2023; Marquis et al. 2023). One of the primary reasons41

for this knowledge gap is the lack of sufficient observations at the spatiotemporal scales needed42

to capture the growth of deep convective clouds or mesoscale variability in their environments.43

Additionally, the current numerical models fail to resolve convective scale processes at both coarse44

and fine spatiotemporal scales (Bryan et al. 2003). Thanks to the recent Atmospheric Radiation45

Measurement (ARM) research field campaigns (Jensen et al. 2016; Martin et al. 2017; Fast et al.46

2019; Varble et al. 2021; Jensen et al. 2022), there has been a significant advancement in our47

understanding of cloud-scale processes and their evolution in response to initial thermodynamical48

and dynamical conditions. Nonetheless, the extent to which local environmental heterogeneity49

controls the fate of a developing convective cloud is still debatable (Romps and Kuang 2010; Böing50

et al. 2012; Dawe and Austin 2012; Brast et al. 2016; Rousseau-Rizzi et al. 2017; Kurowski et al.51

2019; Tian et al. 2021; Morrison et al. 2022).52

This Work has been submitted to AMS Monthly Weather Review. Copyright in this Work may be transferred without further notice.24
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Another reason for an incomplete understanding of the evolution of a convective cloud is its53

dependency on complex thermodynamic and dynamical interactions between convection and the54

environment across a wide range of spatiotemporal scales (Johnson et al. 1999; Martin and Xue55

2006; Zhang and Klein 2010; Kirshbaum 2011; Hohenegger and Stevens 2013; Rieck et al. 2014;56

Moser and Lasher-Trapp 2017; Bachmann et al. 2020; Henkes et al. 2021; Chen et al. 2023).57

These interactions can become more intricate in the presence of environmental and land-surface58

heterogeneity, forcing mesoscale circulations, such as the sea and bay-breeze fronts (collectively59

referred to as SBF; Weaver 2004). The diurnal precipitation cycle associated with thermally direct60

circulations in coastal regions, like the ubiquitous summertime SBF in southeast Texas, is greatly61

influenced by mesoscale gradients in surface fluxes, alongside modifications to lower-tropospheric62

instability and moisture induced by the SBF (Ohashi and Kida 2002).63

The phase and intensity of the diurnal precipitation cycle over land is known to be closely tied64

to the evolution of planetary boundary layer processes (hereinafter referred to as PBL; Schlemmer65

et al. 2012; Harvey et al. 2022). All else being equal, the horizontal scale of mesoscale thermal66

forcing coupled with PBL processes governs the cumulus cloud width, updraft buoyancy, and67

vertical velocity (Grabowski et al. 2006; Robinson et al. 2008; Morrison et al. 2022). The initial68

updraft width at the cloud base largely determines which thermals in a cloud field will undergo69

the deepest ascent and have a longer lifetime (Rousseau-Rizzi et al. 2017; Wilhelm et al. 2023).70

The size and strength of updrafts at or ahead of the SBF typically scale with the PBL height71

under constant surface heat fluxes and calm wind conditions, but the scaling breaks down when72

environmental wind is included (Fu et al. 2022). Similarly, Rieck et al. (2014) found that instead of73

scaling with the PBL height, evolution of the largest clouds involved a complex interplay between74

the characteristics of triggered mesoscale circulations and the diurnal cycle of surface heating.75

Once deep convection initiates, other mesoscale processes such as gravity waves and cold pools76

also play a role in the onset and propagation of deep convection (Khairoutdinov and Randall 2006;77

Schlemmer and Hohenegger 2014; Bechtold et al. 2014; Colin et al. 2019).78

The timing and strength of mesoscale convergence along SBFs and/or during collision of a79

SBF and a convective outflow boundary can also influence the evolution of cloud width and80

depth (Rieck et al. 2014; Birch et al. 2015; Rousseau-Rizzi et al. 2017; Fu et al. 2022). In their81

idealized simulations of convection initiation (hereinafter referred to as CI) along SBF convergence82
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boundaries, Fu et al. (2021) found three generations of deep convection. While the first two83

generations occurred along the SBF convergence line, the third generation of convection developed84

from the intersection of the cold pools produced by the second generation of convection through85

collision between the gust front and the SBF. Constructive and destructive interactions between SBF86

and local thermal circulations such as coupling with internal gravity waves, horizontal convective87

rolls and urban heat island circulations can also initiate deep convection with updrafts of varying88

intensity (Nicholls et al. 1991; Wakimoto and Atkins 1994; Ohashi and Kida 2002; Fovell 2005;89

Cheng and Byun 2008; Dandou et al. 2009). The strength of mesoscale convergence along90

the SBF can significantly vary based on changes in land-surface sensible heat flux, convective91

turbulence, and the strength of synoptic onshore/offshore flow. As buoyant production of PBL92

turbulence increases during peak daytime heating, it leads to frontolysis of SBF and slowing of93

inland penetration speed by weakening the thermal gradient, thereby controlling the thermal and94

dynamical forcing for deep convection.95

Background meteorological variability and anthropogenic aerosol perturbations in the greater96

Houston metropolitan area offer opportunistic experiments to study the life cycle of isolated97

convection (Fridlind et al. 2019). Owing to the differential heating between land and water (Gulf98

of Mexico to the south and Galveston Bay to the east), and a considerable heterogeneity in land99

use land cover, the greater Houston area undergoes a relatively rapid evolution of the diurnal100

PBL and mesoscale convergence zone along the SBF as it advances north. Typically, there are101

several mesoscale air masses present in the Houston region on a convective day (continental air,102

maritime Gulf-of-Mexico air, maritime Galveston Bay air, and convective outflow). Each air mass103

carries unique thermodynamic characteristics, capable of influencing the development of nearby104

convective cells if it serves as storm inflow. Therefore, it is essential to measure the thermodynamic105

variability across these air masses, emphasizing the need for adaptable mobile measurements.106

Aerosol-convection interactions are yet another factor that can introduce nonlinear changes in the107

microphysical and dynamical structure of clouds, thus contributing to uncertainty in cloud radiative108

forcing in the global climate system (Khain et al. 2005; Li et al. 2011; Morrison and Grabowski109

2011; Grabowski 2015; Thornton et al. 2017; Lebo 2018; Heikenfeld et al. 2019; Marinescu et al.110

2021). As a result, it can be challenging to quantify the causal effect of meteorological variability111

and aerosols independently. With this goal in mind, the mobile measurement team from Texas A&M112
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University (TAMU) joined forces with the Tracking Aerosol-Convection Interaction Experiment113

(TRACER) field campaign, supported by the U.S. Department of Energy’s (DOE) ARM facility.114

However, in this paper, we focus on determining the potential effects of meteorological variability115

on convection, so that subsequent work can isolate any aerosol-dependent effects within the proper116

meteorological context.117

The strength of subcloud ascent induced by mesoscale thermodynamic forcing predominantly118

dictates the initial width and vertical acceleration of updraft parcels as they encounter entrainment-119

driven dilution, adverse vertical perturbation pressure gradients, and synoptic-scale downdrafts120

(Peters et al. 2020; Morrison et al. 2022). The TAMU TRACER field campaign sought to sample121

the air masses that were unsampled by the fixed ARM sites. This approach aimed to enhance our122

understanding of how mesoscale heterogeneity in ambient meteorological conditions and aerosol123

concentrations affects the evolution of convective clouds around the Houston region. A spatial124

map of the fixed ARM sites along with the TAMU deployment locations is shown in Fig. 1. The125

main objective of this study is to characterize the spatiotemporal variability in thermodynamic126

and kinematic environments and convective cell characteristics across the SBF for 15 TAMU127

TRACER Intensive Operational Period (IOP) days with a well-defined SBF and predominantly128

isolated convective cells. These IOPs occurred during July–September 2022, on days when a129

subtropical high pressure system prevailed over southeastern Texas, supporting inland propagating130

SBF and isolated to scattered convective cells in a low-shear environment. In the absence of direct131

measurements of updraft vertical velocity, radar proxies for updraft intensity and width such as132

maximum composite reflectivity, 20-dBZ echo-top height, and convective cell area can be used to133

track the evolution of convective updraft life cycle. We investigate whether the observed differences134

in the aforementioned radar-based cell attributes for shallow and deep convective clouds on either135

side of the SBF can be explained solely based on the thermodynamic variability. We hypothesize136

that the deep convective clouds originating in the air mass with larger thermodynamic forcing in137

the form of larger values of convective available potential energy (CAPE) and free tropospheric138

environmental humidity will exhibit larger cloud width, composite reflectivity, and radar echo-top139

heights.140
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Fig. 1. Geographical illustration of the fixed ARM sites (AMF1 and ANC) and the mobile TAMU sites during

early and late afternoon deployments. Gray range rings on the map represent the 110 and 150 km range rings for

the CSAPR2 and KHGX radars, respectively. Surface elevation is shaded.

141

142

143
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2. Data and Methods144

a. TAMU TRACER mobile sampling strategy145

The 15 TAMU TRACER IOP days analyzed here featured a well-defined SBF that was forecast to146

trigger isolated convection in and around the Houston metropolitan region on enhanced operation147

days for the broader TRACER project. The adaptive, fully mobile TAMU onsite radiosonde1148

deployments were targeted to sample the thermodynamic and kinematic profiles of air masses149

unsampled by the fixed ARM sites via two deployments each day with radiosonde launches150

simultaneous to those at the ARM sites. For the early afternoon deployment, we launched a151

radiosonde between 1230 and 1400 LT from Galveston, TX when the sea breeze was typically to152

the southeast of both ARM sites and the Galveston bay breeze was between them. During the153

afternoon, the SBF moved inland (sometimes reinforced with storm outflow) and overtook both154

ARM sites. During this period, the TAMU team would relocate to an inland deployment site to155

sample the continental air mass north of the SBF, while the ARM sites sampled the maritime air156

mass. The late afternoon radiosonde launches varied between 1530 and 1830 LT. Both TAMU157

radiosonde deployments were accompanied by a surface weather station deployment to provide158

surface observations for each sounding.159

b. Upper-air measurements160

The ARM sites employed Vaisala RS41 radiosondes, whereas the iMet-4 research radiosondes161

were used for TAMU operations. The radiosonde temperature and humidity sensors have different162

performance characteristics, particularly at temperatures lower than -35 ◦C. To ensure that any163

potential time lag issues with the iMet-4 humidity sensor would not impact the accuracy of the164

dewpoint temperature profile, we conducted a thorough comparison of humidity data obtained from165

both the Vaisala RS41 and iMet-4 radiosondes. We found that iMet-OS II post-processing software166

sufficiently rectified the raw humidity profile by accounting for the effects of solar radiation, varying167

dry bias with height, and time lag errors at temperatures below -35 ◦C. Although the specific168

correction factors used were proprietary and not openly available, the corrected humidity profile169

aligned well with the free-tropospheric humidity profile from the Vaisala RS41 radiosondes.170

1The TAMU team also conducted surface-level and profiling aerosol measurements during each deployment, but this paper focuses on our
radiosonde observations.
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The ARM sites consistently launched five radiosondes at specific times on TRACER IOP days171

with enhanced operations: 1230, 1400, 1530, 1700, and 1830 LT. We classified the ARM ra-172

diosonde data into early and late afternoon categories, further segmented based on the air mass173

within which the radiosonde was launched. Additionally, meteorological measurements on the174

ozonesondes launched as part of the DOE TRACER-Sonde and TRACER-TCEQ-AQ2 field cam-175

paigns (Walter et al. 2023) contributed pre-convective environmental profiles around 1000 LT.176

These profiles were better suited for representing the environmental conditions favorable for CI177

around 1100 LT, thus augmenting the ARM and TAMU datasets. Upon aggregating all the ra-178

diosonde data, each individual sounding was assigned a representative air mass to differentiate179

among distinct mesoscale air masses sampled by the radiosondes. This classification process180

relied on various in situ and remote sensing observations.181

For the TAMU radiosonde data, the first step in classifying air masses involved reviewing the182

field deployment notes. This information included instantaneous wind speed and direction from183

the surface weather station, radar and satellite imagery over the Houston region, and an initial184

subjective assessment of the air mass category at the time of each radiosonde launch. The next step185

involved verifying the subjective classification through a manual analysis of time series data for186

surface meteorological variables (i.e., temperature, dewpoint temperature, wind speed, and wind187

direction) at the radiosonde launch site. The SBF passage was often indicated by a drop in the188

temperature, an increase in dewpoint temperature, a sudden spike in wind speed, and/or a rapid shift189

in wind direction—often shifting to south-southeasterly after the SBF passed the site. Given the190

presence of multiple gust fronts and cold pool boundaries nearby, we manually reviewed satellite191

and radar animations close to the launch site and time to eliminate the potential of misidentifying192

a gust front or cold pool as a SBF. A similar classification procedure was followed for ozonesonde193

and ARM radiosonde data, which included using meteograms generated from the surface weather194

stations at each ARM site and additional verification with radar and satellite imagery. Details195

regarding the timing and air mass classification for all soundings are provided in Table 1.196
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Table 1. Launch times and air mass classification for radiosondes launched during the 15 TAMU TRACER

IOP days analyzed in this study. The launch times are indicated using specific text font styles to represent different

air mass classification: italics for maritime, bold for continental, and asterisk superscript for pure outflow or

outflow-modified air mass.

197

198

199

200

Deployment date Launch time
(TAMU site 1)

Launch time
(TAMU site 2)

Launch time
(AMF1)

Launch time
(ANC)

Launch time
(Ozonesonde)

26 June 2022 1857
(Galveston)

2324
(Waller)

1730, 1900, 2031,
2200, 2330

1729, 1903, 2030,
2200, 2330

None

11 July 2022 1901
(Galveston)

2327
(Waller)

1730, 1900, 2030,
2200, 2330*

1730, 1900, 2030,
2200, 2330

None

13 July 2022 1730
(Galveston)

2204
(Waller)

1730, 1900, 2030,
2200, 2331

1730, 1900, 2030*,
2200*, 2330*

1502, 2103
(La Porte, UH)

27 July 2022 1732
(Galveston)

2123
(Waller)

1910, 2059,
2200, 2329

1746, 1911, 2030,
2200, 2330

1502
(La Porte)

28 July 2022 1725
(Galveston)

2132*

(Waller)
1730*, 1906,
2057*, 2331

1730, 1900, 2030,
2200, 2330

1458
(UH)

29 July 2022 1725
(Galveston)

2109
(Waller)

1900*, 2030*,
2200*, 2331*

1730, 1900,
2200*, 2330*

1500
(La Porte)

7 August 2022 1721
(Galveston)

2127
(Hempstead)

1730, 1900, 2030,
2200, 2329

2030,
2200, 2330

1457
(La Porte)

8 August 2022 1724
(Galveston)

2131
(Hempstead)

1730, 1900, 2030,
2200, 2330

1730, 2030,
2200, 2330

1444
(La Porte)

9 August 2022 1726
(Galveston)

2139
(Hempstead)

1731, 1900, 2030,
2200, 2329

1730*, 1900*,
2030*, 2330*

1500
(La Porte)

26 August 2022 1726
(Galveston)

2134
(Prairie View)

1730*, 1924*,
2200*

1730*, 2031*,
2200*, 2330*

1506, 1635, 1938
(La Porte, Galveston Bay,
Beach City)

28 August 2022 1728
(Galveston)

2119
(Hempstead)

1730, 1901, 2031,
2200, 2331

1730, 2030,
2200, 2330

1500
(La Porte)

31 August 2022 1729
(Galveston)

No deployment 1730, 1902, 2032,
2201, 2330 1730 1528

(Galveston Bay)

17 September 2022 1718
(Galveston)

2059
(Hockley)

1730, 1900, 2030,
2200, 2331

1730, 1900, 2030,
2200, 2330

1500
(La Porte)

18 September 2022 1726
(Galveston)

2126
(Hockley)

1731, 1900, 2030,
2200, 2330

1730, 1900,
2200, 2330

1501
(La Porte)

19 September 2022 1659
(Galveston)

2059
(Hempstead)

1730, 1900, 2030,
2200, 2329

1730, 1900, 2030,
2200, 2330

1458
(La Porte)
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c. KHGX cell tracking and classification201

To track the life cycle of convective cells throughout the 15 TAMU TRACER IOP days, we used202

the PyFLEXTRKR Python package (Feng et al. 2022, 2023). First, KHGX PPI reflectivity data203

were gridded onto a three-dimensional Cartesian grid with a uniform grid spacing of 500 m in the204

horizontal and vertical dimensions. We limited our cell tracking period between 1100 and 1900205

LT for each IOP, aligning with the typical start of the SBF’s inland progression. Furthermore, we206

exclusively tracked cells that remained within a 150-km radius from the KHGX radar to remove207

cells that were poorly resolved due to beam broadening at longer ranges. PyFLEXTRKR uses a208

modified version of the Steiner algorithm (Steiner et al. 1995) for cell tracking. This algorithm209

incorporates a background reflectivity threshold to distinguish the convective cores from the210

surrounding stratiform rain within each cell. The reflectivity threshold was chosen to distinguish211

individual cells in scenarios involving multiple cells in close proximity and to ensure the earliest212

possible detection of isolated cells. After iterative testing, we subjectively selected the algorithm213

parameters that best met these goals.214

Our goals require us to distinguish between cells that remain shallow and those that transition215

to deep convection in each air mass. Cells with a 0-dBZ echo-top height always less than or216

equal to 6 km were classified as shallow cells, and those with a 0-dBZ echo-top height that217

started below 6 km but eventually attained 7.5 km or higher were considered transitioning cells.218

All other cells were discarded. Subsequent analysis was conducted only on cells (shallow and219

transitioning2) that did not merge or split throughout their life cycle and were tracked through at220

least two consecutive KHGX volume scans (∼ 12 minutes). This choice retains only well-tracked221

cells for a comprehensive analysis of their full life cycle. The evolution of the 0-dBZ echo-top222

height of the shallow and transitioning cells thus identified is illustrated in Fig. 2.223

2In the subsequent sections of this paper, the terms “transitioning” and “deep” convective cells will be used interchangeably.

11



Fig. 2. Time series of 0-dBZ echo-top height for shallow (blue) and transitioning (red) convective cells tracked

using KHGX gridded reflectivity data. The time series starts at t = 0 minutes, when the tracked cell reaches an

area of 10 km2.

224

225

226
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d. Vertical profiles of polarimetric variables from CSAPR2227

To capture the rapid evolution of convective clouds (both shallow and transitioning) during228

the TRACER field campaign, the DOE C-band Scanning ARM Precipitation Radar (CSAPR2)229

employed an adapted Multisensor Agile Adaptive Sampling strategy (Kollias et al. 2020; Lamer230

et al. 2023). This sampling strategy was designed to execute a series of RHI scans aimed at “areas of231

interest” in a target cells. Detailed discussion regarding the CSAPR2 cell tracking strategy during232

TRACER can be found in Lamer et al. (2023). For this study, we used processed radar variables233

from CSAPR2 RHI scans including noise-masked reflectivity (ZH), differential reflectivity (ZDR)234

corrected for rain attenuation and systematic biases, specific differential phase (KDP), co-polar235

cross-correlation coefficient, and locations of target cells.236

Designated azimuths for CSAPR2 RHI scans corresponded to the maximum values of certain237

radar variables (see Table 1 in Lamer et al. 2023). Nevertheless, a time gap of around 60 seconds238

persisted between the timestamp of the PPI scan that provided the target azimuth information and239

the actual start time of the RHI scan. As a result, the evolving microphysical processes within240

the storm during this interval could significantly alter the vertical profile of radar variables. To241

accurately capture the vertical profiles corresponding to the maximum values of ZH or ZDR, we242

chose to analyze each RHI scan and select the one with the largest values instead of solely relying243

on the designated RHI. For KDP, the RHI with the largest vertically integrated KDP value (rather244

than the absolute maximum value) was chosen. Similar to the KHGX cells, each cell tracked245

by CSAPR2 was also identified as maritime, continental, or SBF CI and classified as shallow or246

transitioning. To extract the vertical profile of the radar variables, we began by gridding the RHI247

data from their native polar coordinate system to a Cartesian grid with a uniform grid spacing of248

100 m in both horizontal and vertical dimensions. Each RHI with the largest value of each radar249

variable was mapped to a track number identified by applying PyFLEXTRKR to CSAPR2 PPI250

scans. If no target cell was found within 5 km and 2 minutes of an RHI, the RHI was discarded.251

e. Sea and bay breeze identification and tracking252

Tracking the location of the SBF allowed us to determine the representative air mass within253

which the convective cells initiated. For the purpose of this study, we exclusively focused on254
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CI3 occurring over land, while disregarding any CI over the ocean. We combined GOES-16255

visible satellite imagery with NEXRAD data from KHGX radar (WSR-88D located in League256

City, Texas; NOAA National Weather Service (NWS) Radar Operations Center 1991), and two257

terminal Doppler weather radars near the George Bush Intercontinental and Hobby airports in258

Houston, Texas (TIAH and THOU, respectively). This allowed us to track the SBF, identifying259

its leading edge as a boundary separating fair weather bubbling cumulus clouds (or horizontal260

convective rolls) to the north or cumulonimbus clouds (post CI) at the frontal boundary from261

the relatively clear air mass to the south. We also examined satellite and radar images to ensure262

accurate delineation between the SBF and nearby cold-pool boundaries. During each IOP day,263

we tracked the SBF starting from its initial appearance as a coherent mesoscale boundary in the264

satellite and radar data until the point where its structure became too diffused to differentiate from265

nearby weak cold pool outflow boundaries. The spatial footprint of each SBF was recorded by266

manually outlining a polygon, considering the finite width and length of the frontal boundary267

and accounting for the uncertainty associated with satellite and radar-based location indicators for268

the fronts. This polygon was then saved as a list of latitude-longitude coordinates defining the269

boundary at 30 minute intervals. This interval was suitable for tracking the gradual progression270

of the SBF, except in cases when it merged with an outflow boundary from nearby convection.271

In such cases, polygons were recorded more frequently to capture the short-term changes in the272

SBF. To ensure the reliability of our subjective identification of the SBF location, we conducted273

a sensitivity analysis to account for minor spatial uncertainties in the position and width of the274

SBF boundary. In this analysis, we reclassified cells located within a 5-km distance on both sides275

of the SBF polygon boundary as ‘SBF’ cells. We repeated this process with a 10-km distance276

threshold. The aim was to assess whether variations in these thresholds would impact our findings.277

The sensitivity analysis revealed that our qualitative results remained consistent regardless of the278

distance threshold used. Furthermore, we validated the satellite and radar-based tracking of SBF279

propagation by comparing it with the timing of wind direction and speed changes recorded by the280

ASOS stations nearest to the fixed ARM sites.281

We applied the filament spatiotemporal interpolation method (Boubrahimi et al. 2018) to estimate282

the SBF location every 5 minutes, aligning it with the frequency of CI data (roughly every 5 min,283

3In this context, the term “CI” indicates the beginning time of a cell track when tracking convective clouds using KHGX radar data. For more
details on cell tracking, please refer to section 2c.
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coinciding with radar and satellite updates). Subsequently, using the location of each convective284

cell at the time of CI, we calculated its distance from the SBF, allowing differentiation between285

“maritime” and “continental” CI. Given the prevalence of convective cells that initiated in close286

proximity to the SBF, we classified all CI within 5 km of the SBF boundary as “SBF cells” to287

distinguish them from CI in purely continental or maritime air masses.288

3. Results289

a. Overview of the afternoon evolution of SBF and CI290

During the inland propagation of the SBF, CI typically reached its peak between 1400 and 1500291

LT (see Fig. 3). The distribution of cell lifetimes exhibited positive skewness, with a median292

lifespan of 32.5 minutes (Fig. 3a). In total, less than 14% of all tracked cells underwent either293

a merger or a split during their lifetime. Specifically, shallow cells had a median lifetime of 24294

minutes, while transitioning cells had a median lifetime of 49 minutes. The hourly distribution295

of maximum cell area (Fig. 3b), maximum 20-dBZ echo-top height (Fig. 3c), and maximum296

cell reflectivity (Fig. 3d) did not reveal any discernible trends in their respective median values.297

However, the top quartile of both the maximum cell area and maximum 20-dBZ echo-top height,298

peaks between 1500 and 1700 LT (Fig. 3b and c), corresponding to the time when the SBF had299

already moved north of the ARM sites (cf. Figs. 4a and b). Many cells that initiated earlier had300

sufficient time to grow in size and attain their peak reflectivity, resulting in the time lag between301

the peak in CI and maximum area and 20-dBZ echo-top height values. The hourly distribution of302

maximum cell reflectivity, however, remained relatively constant throughout the analysis period303

(Fig. 3d).304

The SBF typically moved northward (inland), exhibiting variations in both strength and extent of305

its areal coverage (Fig. 4). The only exception occurred on 26 August 2022 when scattered showers306

and thunderstorms developed along surface convergence from the sea breeze and a weak outflow307

boundary from prior convection. Subsequent interactions between the sea-breeze and convective308

outflow from widespread thunderstorms constrained the inland propagation of the SBF (Fig. 4c;309

dark violet line). The inter- and intra-day variability observed in Fig. 4c is likely a consequence310

of multi-scale interactions involving the synoptic flow, mesoscale gradients in surface fluxes, and311

local geographical characteristics, among other factors (Crosman and Horel 2010).312
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Fig. 3. Convective cell characteristics for the combined 15 TAMU TRACER IOPs analyzed in this study. Cells

tracked for a minimum of 12 minutes were included in this analysis. (a) Distribution of cell lifetimes (minutes).

Gray bars correspond to all cells, while red bars represent cells that remained isolated throughout their lifetime.

Hourly boxplots for (b) Maximum cell area (logarithmic scale), (c) Maximum 20-dBZ echo-top height (km),

(d) Maximum composite reflectivity (dBZ). Red line in (b) and (c) represents the hourly cell initiation count,

whereas in (d), it signifies the hourly percentage of cells that developed into deep convection. Golden bars on

the top axis represent the typical radiosonde launch times from ARM sites. Cell sample size includes only those

identified at or on either side of the SBF within a 150 km range from the KHGX radar between 1100 and 1900

LT.
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(a) (b)

(c)

Fig. 4. Summary of the location of SBF boundary (transparent shaded region) and convective cells with ≥ 35

dBZ composite reflectivity (solid filled contours) during the early afternoon (a) and late afternoon (b), combining

all 15 TAMU TRACER IOP days. The early and late afternoon timings align with the radiosonde launch times

by the TAMU crew. The 35-dBZ composite reflectivity threshold indicates the location of precipitation core of

each convective cell. The time series in (c) illustrates the mean distance of the SBF boundary from the coastline

for each IOP day.
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The analysis of cell initiation density (count of cell tracks that started within a lon-lat grid cell328

of size 0.14◦× 0.13◦) revealed two prominent hotspots, located to the east-northeast (east of the329

AMF1 site) and southwest of the Houston metropolitan region (around the ANC site; Fig. 5a).330

These hotspots indicate the preferential CI locations due to SBF convergence, consistent with the331

climatological trend reported by Tuftedal et al. (2023) in their multi-year analysis of sea-breeze332

convection in and around the Houston region. The timing of peak CI (1300–1600 LT; see Fig. 3b)333

also aligns with their findings and coincides with the typical passage of the SBF through the334

hotspots. The mean values of cell area and 20-dBZ echo-top height exhibited slightly higher335

values over the southwestern hotspot (near the ANC site) and also in the region northwest of the336

AMF1 site, potentially due to mature deep convective clouds moving across these areas later in337

time (Fig. 5b and c).338

Fig. 5. Spatial heatmaps of cell attributes for cells that initiated over land, within a 150-km range from the

KHGX radar during the analyzed IOP days (refer Table 1). (a) Gridded count of cell initiation, (b) Gridded

mean cell area, and (c) Gridded mean 20-dBZ echo-top height. Heatmaps in (b) and (c) illustrate mean values

for all cell tracks at all times in their lifetime. Therefore, slow moving cells may have contributed to the same

bin multiple times.
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b. Overview of spatiotemporal environmental heterogeneity across air mass regimes344

To quantify the thermodynamic variability across the SBF, we categorized TAMU and ARM345

sounding data according to the time of radiosonde launch: early afternoon (1230–1400 LT) and346

late afternoon (1530–1900 LT). The SBF contributed to the presence of distinct, nonstationary347

mesoscale air masses in the Houston area, allowing us to sample the differences between air348

masses, but also the heterogeneity within an air mass when there were multiple observing sites in349

the same air mass. Consequently, this subsection delves into the environmental heterogeneity by350

considering the sites from which the soundings were launched.351

To visualize the differences in thermodynamic environments, we computed composite profiles352

of sounding data from each site at the time closest to the TAMU radiosonde separately for early353

and late afternoon periods. We plotted the Skew𝑇-log𝑝 diagram by interpolating and averaging the354

dry bulb and dewpoint temperature profiles onto a 5 m vertical resolution AGL grid for each site355

(Figs. 6a and b). In the early afternoon composite, the TAMU profiles (primarily in the maritime356

air mass) exhibited the highest dewpoint temperature within the lowest 50-hPa layer. However,357

moisture decreased rapidly above the 950 hPa level, resulting in the lowest dewpoint temperature358

in TAMU soundings between 950 and 700 hPa. Additionally, a combination of overall lower359

temperature and moisture within the lowest 100-hPa layer at the TAMU site led to the lowest values360

of mixed-layer convective available potential energy (ML CAPE) at the TAMU site.361

On the other hand, the late afternoon sounding composite revealed a moisture deficit at the TAMU362

site within the lowest 100-hPa layer, along with a substantial dry layer in the mid-levels between363

the 600 and 400-hPa levels (Fig. 6b). The surface equivalent potential temperature (𝜃𝑒,sfc) of the364

continental air mass at the TAMU site was considerably higher than the ARM sites. However, the365

higher 𝜃𝑒 air was very shallow, so when considering the drier mixed layer at the TAMU site, mixed-366

layer 𝜃𝑒 was lower at the TAMU site. The maritime air mass (ARM sites) was drier compared367

to continental air mass (TAMU) between the 900 and 650-hPa levels. This could partly be due368

to subsidence in the sinking branch of the sea breeze circulation. Despite differences between369

air masses and observing sites, ML CAPE generally decreased everywhere later in the day due to370

reduced solar insolation and mixing of dry continental air with moist maritime air mass as the SBF371

moved farther inland (compare Figs. 6a and b).372
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(a)

ML CAPE (J kg-1)

TAMU = 1753
AMF1 = 1940
ANC = 1843

Sample size
TAMU = 13
AMF1 = 13
ANC = 13

ML CAPE (J kg-1)

TAMU = 1041
AMF1 = 1348
ANC = 1577

Sample size
TAMU = 11
AMF1 = 11
ANC = 11

(b)TAMU temperature (°C)
AMF1 temperature (°C)
ANC    temperature (°C)

TAMU dewpoint (°C)
AMF1 dewpoint (°C)
ANC    dewpoint (°C)

Fig. 6. Skew𝑇-log𝑝 diagrams of composite environmental profiles at TAMU (solid line), AMF1 (dashed),

and ANC (dotted) sites during radiosonde launches in (a) early afternoon (1230–1400 LT) and (b) late afternoon

(1530–1900 LT). Parcel path (solid gray line) in (a) and (b) corresponds to the lowest 100 hPa mixed-layer parcel

in the TAMU sounding data. Virtual temperature profiles are shown as dashed black lines.
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374

375
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Thermodynamic heterogeneity between early and late afternoon air masses at the three sounding377

sites can also be visualized by plotting the composite profile differences of potential temperature,378

relative humidity, and undiluted parcel buoyancy (Fig. 7). This comparison helps mitigate vari-379

ability in overall synoptic conditions across days and offers further insight into the variability of380

thermodynamic conditions. For example, in the early afternoon the largest differences in all three381

thermodynamic variables were found within the surface–3 km layer between the TAMU and ANC382

sites (Fig. 7c). The low-level air mass heterogeneity between these two sites persisted in the late383

afternoon, with the largest differences confined to the surface–2 km layer (Fig. 7d). The warm and384

dry continental air mass at the TAMU sites in the late afternoon also resulted in a larger reduction in385

parcel buoyancy when compared with both the ARM sites (Fig. 7b and d). However, the differences386

in potential temperature and relative humidity reached their peak magnitude between the TAMU387

and AMF1 sites at mid-to-upper levels (between 4 and 12 km AGL; Fig. 7b). The ARM sites had388

the least variability in the early and late afternoon, and with the cooling and moistening at the ANC389

site in late afternoon, the low-level differences in potential temperature and relative humidity were390

further reduced (Fig. 7e and f).391
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θ (K) 
RH x 101 (%)
Undiluted buoyancy x 101 (m s-2)

TAMU - AMF1

TAMU - ANC

AMF1- ANC AMF1- ANC

TAMU - ANC

TAMU - AMF1

Early afternoon Late afternoon

(a) (b)

(c) (d)

(e) (f )

Fig. 7. Vertical profiles for composite mean (solid line) and ±1 standard deviation around the mean of

differences (shaded) for potential temperature (𝜃; red), relative humidity multiplied by 10 (RH × 101; green), and

undiluted parcel buoyancy multiplied by 10 (blue). (a) Differences between early afternoon TAMU and AMF1

sounding data, (b) same as (a) except for late afternoon sounding data, (c) differences between early afternoon

TAMU and ANC sounding data, (d) same as (c) except for late afternoon sounding data, (e) differences between

early afternoon AMF1 and ANC sounding data, (f) same as (e) except for late afternoon sounding data. Dashed

black vertical line indicates a difference of zero. The vertical profiles were generated after smoothing the data

using a rolling mean with a 100-m window.
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Site-specific differences between sounding-derived parameters reveal that the maritime air mass400

sampled by the TAMU soundings (from the sea breeze) had lower values of total precipitable401

water (TPW), mixed-layer entraining CAPE (ML ECAPE), and PBL height compared to the ARM402

sites during the early afternoon deployments (Fig. 8a,c, and d). However, the maritime air mass403

sampled at the AMF1 site in the early afternoon (from the bay breeze) had the maximum TPW. As404

the SBF boudnary passed over the fixed ARM sites and mixed with the preexisting air masses at405

those locations, the thermodynamic characteristics became more homogeneous at the AMF1 and406

ANC sites in the late afternoon (Fig. 8a–d). The dry air mass encountered at the TAMU site during407

late afternoon played a significant role in the entrainment-driven dilution of the parcel buoyancy.408

This led to substantial reductions of ML ECAPE values compared to those observed at the ARM409

sites (Fig. 8c).410

(a) (b)

(d)(c)

Fig. 8. Boxplot distribution of the difference in (a) total precipitable water, (b) ML LCL, (c) ML ECAPE,

and (d) PBL height values between TAMU, AMF1, and ANC sounding data, grouped by early (orange) and

late afternoon (purple) radiosonde measurements. Individual data points contributing to each distribution are

depicted as dots overlaying the boxplots, with the median value denoted by the dashed black line within each

box. The dashed grey vertical line in each panel plot indicates a difference of zero.
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Partitioning the soundings by air mass provides better understanding of the thermodynamic416

variability within similar air masses while also revealing disparities between different air masses417

during the same time periods. With the exception of the AMF1 site, the dominant air mass changed418

between the early and late afternoon soundings as the SBF passed. The close presence of Galveston419

Bay led to a much earlier transition to maritime air at the AMF1 site, where a bay breeze typically420

reached the site at least 3 hours before the sea breeze (Dié Wang, personal communication, January421

2023). Therefore, AMF1 was an ideal site to investigate heterogeneity within the maritime air422

mass.423

The contrasting thermodynamic properties between the sea and bay breeze air masses were424

evident in the significantly different distribution of ML CAPE values during the early afternoon425

maritime soundings at the TAMU and AMF1 sites, respectively (Fig. 9a). The median ML CAPE426

for TAMU soundings was 1780 J kg−1, while for AMF1 soundings, it was 2118 J kg−1. Surprisingly,427

the ML CAPE values for the continental air mass sampled at the ANC site were similar to the428

TAMU site. We initially anticipated a larger variability between continental and maritime air429

masses than within different maritime air masses from distinct sources. A possible explanation430

for this unexpected result could be the influence of prior convective outflow nearby, leading to431

low-level moistening earlier in the day before the sea breeze reached the ANC site.432

During the late afternoon radiosonde launches, both ARM sites were in a maritime air mass. The433

distribution of ML CAPE values had a notable overlap between the AMF1 and ANC sites (both434

maritime), whereas at the TAMU site (continental) the distribution was negatively skewed, with a435

median value of 1170 J kg−1, considerably lower than the median ML CAPE at the AMF1 (1415436

J kg−1) and ANC (1628 J kg−1) sites. The late afternoon maritime air mass sampled at the AMF1437

site also had the largest variability which is most likely an outcome of the complex interactions of438

sea and bay breeze with convective outflow boundaries from nearby convection. A comparison of439

mean values for other environmental parameters, categorized based on the launch site and time of440

the day, is provided in Tables 2 and 3. Throughout both the early and late afternoon, significant441

moisture differences persisted between the TAMU and ANC sites. In the early afternoon, these442

differences manifested in the mean RH within the 850-700 hPa layer, which roughly corresponds443

to the active cloud-bearing region (the layer located between the height of the LFC and 1.5 km444

above it; see Lock and Houston 2014) for these data. As the day progressed, the contrast in445
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mean boundary layer RH between the two sites became increasingly pronounced. Besides CAPE,446

differences in the thermodynamic properties of air masses sampled at the TAMU and ARM sites447

were also evident in the boundary layer depth, LCL height, 0–3 km lapse rate, and effective inflow448

layer depth (the contiguous layer wherein lifted parcels would have at least 100 J kg−1 of CAPE449

and CIN < -250 J kg−1; see Thompson et al. 2007).450

24



(a)

(b)

1780

2118

1817

1170

1415

1628

2645

(15)

(2)

(2)

(13)

(12)

(12)

(11)

(10)

2164

(1)

(1)

(1)

(1)

(1)

Early afternoon

Late afternoon

Fig. 9. Boxplots of ML CAPE (lowest 100 hPa mixed-layer parcel) depicting thermodynamic variability

within and across maritime (violet), continental (orange), and outflow (cyan) air masses at TAMU, AMF1, and

ANC sites during (a) early and (b) late afternoon environmental soundings. Median ML CAPE values for each

distribution are indicated next to the respective boxplots. Sample sizes for each category are shown in parentheses

on the right.
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Table 2. Environmental metrics for soundings launched from different sites (and air masses) during the early

afternoon deployments. The Kruskal-Wallis test was performed to test whether the mean values of environmental

parameters were significantly different among the three launch sites at an 𝛼 level of 0.05. If the Kruskal-Wallis

test indicated a difference, the Dunn test was performed for pairwise comparisons between launch sites to find out

which two sites were statistically significantly different at 𝛼 = 0.05. The * symbol denotes sites with statistically

significant difference in parameters. In instances where two sites were similar, but both differed from the third

site, a † symbol is used. Table entries represent the mean value (bold text) ± the standard error. Sample sizes for

each site are indicated within parentheses below the corresponding site name.

456

457

458

459

460

461

462

463

Environmental metric Early afternoon

TAMU AMF1 ANC

(15) (14) (14)

Moisture

Total precipitable water vapor (cm) 4.77 ± 0.21 5.00 ± 0.29 4.99 ± 0.28

Mean PBL RH (%) 74.21 ± 4.2 72.84 ± 5.32 72.98 ± 4.41

Mean RH 850–700 hPa layer (%) 63.82* ± 6.26 70.74 ± 7.08 73.99* ± 4.93

Mean RH 700–500 hPa layer (%) 50.99 ± 6.4 52.75 ± 9.98 50.33 ± 9.24

Temperature and instability

CAPE for SFC or MU parcels (J kg−1) 3532 ± 517 3850* ± 638 2923* ± 421

CIN for ML parcels (J kg−1) -27 ± 16 -19 ± 13 -11 ± 7

LFC for ML parcels (m) 1653 ± 307 1618 ± 480 1754 ± 389

LCL for ML parcels (m) 1055* ± 95 1199 ± 216 1372* ± 194

Depth of boundary layer (m) 1312* ± 110 1371 ± 330 1722* ± 369

EL for ML parcels (m) 13789 ± 448 13698 ± 969 13708 ± 629

0 ◦C layer altitude for ML parcels (m) 4893 ± 100 4906 ± 125 4942 ± 124

Lapse rate 0–3 km AGL (K km−1) 7.66* ± 0.14 7.84 ± 0.36 8.14* ± 0.41

Lapse rate 3–6 km AGL (K km−1) 5.89 ± 0.17 5.92 ± 0.14 5.96 ± 0.19

Lapse rate 850–500 hPa layer (K km−1) 6.01 ± 0.15 6.04 ± 0.15 6.09 ± 0.15

Lapse rate 700–500 hPa layer (K km−1) 5.84 ± 0.19 5.88 ± 0.17 5.94 ± 0.25

Lifted index for ML parcels -3.93 ± 0.53 -4.21 ± 0.79 -4.14 ± 0.68

Wind and shear

SRH in effective inflow layer (m2 s−2) 7 ± 14.85 23.14 ± 18.76 8.51 ± 17.16

SRH in 0–3 km layer (m2 s−2) 17.65 ± 23.11 24.74 ± 20.89 21.41 ± 19.59

Bulk shear in effective inflow layer (m s−1) 2.44 ± 0.84 3.34 ± 1.69 4.26 ± 1.55

Bulk shear in 0–1 km layer (m s−1) 2.20 ± 0.62 3.50 ± 1.47 2.91 ± 0.54

Bulk shear in 0–6 km layer (m s−1) 4.39 ± 1.43 5.68 ± 1.43 5.48 ± 1.85

Other

Depth of effective inflow layer (m) 1106* ± 188 1577*† ± 383 1839*† ± 292
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Table 3. Same as Table 2 except for soundings launched during late afternoon deployments.

Environmental metric Late afternoon

TAMU AMF1 ANC

(13) (14) (12)

Moisture

Total precipitable water vapor (cm) 4.64 ± 0.2 4.85 ± 0.32 4.92 ± 0.23

Mean PBL RH (%) 60.79* ± 4.25 65.91 ± 5.1 68.60* ± 4.3

Mean RH 850–700 hPa layer (%) 74.74 ± 4.01 68.31 ± 6.59 71.05 ± 5.51

Mean RH 700–500 hPa layer (%) 48.90 ± 9.35 55.37 ± 10 48.91 ± 9.33

Temperature and instability

CAPE for SFC or MU parcels (J kg−1) 2638 ± 455 3340 ± 466 2762 ± 384

CIN for ML parcels (J kg−1) -20 ± 13 -51 ± 22 -33 ± 23

LFC for ML parcels (m) 2389 ± 262 2104 ± 399 2040 ± 405

LCL for ML parcels (m) 1930* ± 232 1382*† ± 166 1417*† ± 156

Depth of boundary layer (m) 1962* ± 671 1132* ± 233 1440 ± 428

EL for ML parcels (m) 13032 ± 486 13268 ± 731 13673 ± 442

0 ◦C layer altitude for ML parcels (m) 4964 ± 115 4942 ± 99 4980 ± 85

Lapse rate 0–3 km AGL (K km−1) 8.75* ± 0.47 7.73* ± 0.27 7.95 ± 0.51

Lapse rate 3–6 km AGL (K km−1) 5.9 ± 0.26 5.96 ± 0.17 5.95 ± 0.21

Lapse rate 850–500 hPa layer (K km−1) 6.32 ± 0.28 6.18 ± 0.21 6.17 ± 0.23

Lapse rate 700–500 hPa layer (K km−1) 5.82 ± 0.33 5.93 ± 0.2 5.96 ± 0.22

Lifted index for ML parcels -2.46* ± 0.59 -3.36 ± 0.92 -3.75* ± 0.72

Wind and shear

SRH in effective inflow layer (m2 s−2) 3.68 ± 16.33 29.68 ± 21.82 15.97 ± 11.5

SRH in 0–3 km layer (m2 s−2) 6.65* ± 21.43 42.91* ± 25.62 26.32 ± 16.14

Bulk shear in effective inflow layer (m s−1) 3.36 ± 1.78 3.86 ± 1.67 3.94 ± 1.52

Bulk shear in 0–1 km layer (m s−1) 4.22 ± 1.04 4.11 ± 1.07 2.70 ± 1.08

Bulk shear in 0–6 km layer (m s−1) 4.44 ± 1.72 6.87 ± 2.05 6.01 ± 1.89

Other

Depth of effective inflow layer (m) 1894 ± 424 1323 ± 435 1860 ± 200
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To incorporate the effect of dry air entrainment on updraft dilution, we computed the nondimen-464

sional entraining CAPE (𝐸̃𝐴) for each air mass regime, following the analytic formulation proposed465

by Peters et al. (2023). This approach avoids making assumptions regarding the updraft radius or466

entrainment rate and rather determines the latter directly from an environmental sounding. We467

found that both the distribution and the median value of 𝐸̃𝐴, which represents the fraction of undi-468

luted CAPE realized by an updraft, were comparable (∼0.55) for both continental and maritime469

air masses (Fig. 10). Therefore, the updraft parcels in the maritime and continental air masses470

experienced substantial dilution along their trajectories. In contrast, parcels in the outflow air mass471

had a lesser impact from entrainment, with a median value of approximately 0.6.472

Fig. 10. Nondimensional entraining CAPE (𝐸̃𝐴) for all soundings from TAMU, AMF1, and ANC sites,

categorized based on the air mass sampled by the radiosondes. 𝐸̃𝐴 represents the fraction of undiluted CAPE

realized by an updraft (Peters et al. 2023). Solid black and dashed red lines in the shaded part (inter-quartile

range) of the boxplots indicate the median and mean, respectively. Sample sizes are indicated within parentheses

on the x axis.
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c. Overview of convective cell characteristics across air mass regimes478

1) KHGX cell tracking statistics479

Although composite reflectivity alone may not always be the best estimator of convective updraft480

intensity, trends in composite reflectivity can still provide valuable insights into the overall evolution481

of cell intensity. We define composite reflectivity as the maximum radar reflectivity observed482

anywhere within the three-dimensional volume of the tracked cell. To investigate the possible483

effect of air mass heterogeneity on cell characteristics, we partitioned the cell tracks into shallow484

and transitioning cloud categories (refer section 2c). To ensure the robustness of this analysis,485

we exclusively considered cells that were tracked over a minimum of four consecutive KHGX PPI486

scans (approximately ≥ 18 minutes). This filtering step aimed to exclude short-lived cells that487

could potentially introduce noise to the dataset. The number of cells contributing to the mean488

composite reflectivity at any specific time varied throughout the analysis period. As a result, the489

time series plots were terminated once the cell sample size in any one air mass regime fell below490

10, ensuring that the analysis is based on a sufficient number of cells for robust conclusions. In491

section 3b, we focused on site-specific environmental variability. Here, we pivot to examining the492

characteristics of convective cells initiating in varied air masses. This shift allows us to quantify493

how the heterogeneity of air masses influences the evolution of convective cell properties.494

A clear contrast is evident in the time series of composite reflectivity between shallow and495

transitioning clouds (Fig. 11a and b). As expected, transitioning clouds in each air mass regime496

had a larger mean composite reflectivity compared to their shallow counterparts. When comparing497

just the shallow clouds, those that initiated at or in the immediate vicinity of the SBF exhibited498

the highest mean composite reflectivity (41–44 dBZ) throughout the analysis period. This was499

followed by shallow clouds originating within maritime (36–40 dBZ) and continental (30–35 dBZ)500

air masses, respectively. Transitioning clouds that initiated at or near the SBF also had a slightly501

larger mean composite reflectivity up to the first 65 minutes. Up to 30 minutes in the life cycle,502

the 95% confidence interval band around the mean composite reflectivity had a significant overlap503

for continental and maritime cells. However, past the 30-minute mark, maritime cells exhibited a504

slightly larger mean composite reflectivity for the remainder of the analysis period.505

Another commonly employed metric for assessing and distinguishing convective intensity is506

the echo-top height derived from radar reflectivity. However, the time series of the maximum507
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20-dBZ echo-top height in both shallow and transitioning clouds across various air mass regimes508

shows no significant differences (Fig. 11c and d). Despite this lack of distinction, the higher509

composite reflectivity observed in both shallow and transitioning clouds at the SBF, compared510

to their counterparts in the maritime and continental air masses, suggests the potential influence511

of sea-breeze dynamics on convection and associated warm and cold-cloud processes. It is512

plausible that additional moisture and lifting at the leading edge of the SBF may have altered513

the rate of microphysical processes (Michelle Spencer, University of Oklahoma, 2023, personal514

communication). Furthermore, the dynamic forcing at the leading edge of the SBF combined with515

the complex mixed and ice-phase microphysical processes can also alter the drop size distribution,516

possibly leading to the enhanced reflectivity observed in the SBF clouds (Hopper et al. 2020; Suh517

et al. 2021).518

Rapid growth of cloud base area at the time of CI or pre shallow-to-deep transition is a good519

predictor of maximum cell area and cell longevity (Wilhelm et al. 2023). We found that only520

transitioning cells exhibited a distinctive growth in cell area across the air masses (Fig. 11e and521

f). Maritime cells exhibited the highest values of average cell area, which was also positively522

correlated to the cell track duration (not shown). Furthermore, the mean lifetime of maritime cells523

(62 minutes) was higher than the continental cells (55 minutes). It is possible that the cold pool524

modified air mass reinforced updraft redevelopment in long-lived maritime cells (Houston and525

Wilhelmson 2011).526
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(a) (b)

(c) (d)

(e) (f )

Shallow Transitioning

Fig. 11. Time series of mean values of composite reflectivity (a-b), maximum 20-dBZ echo-top height (c-d),

cell area (e-f), categorized based on the air mass in which they initiated. Panel plots in the left and right columns

correspond to shallow and transitioning cells, respectively. Colored lines represent the mean, and the shaded

area represents the 95% confidence interval around the mean. The total sample size for each air mass category

is included within parentheses in the legend. The upper limit of track duration (x-axis) was chosen to ensure at

least five samples contributed to composite reflectivity values for all three air mass categories.
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2) CSAPR2 cell tracking statistics533

During the TRACER field campaign, the warm season subtropical environments in southeast534

Texas were characterized by a predominance of single-cell, ordinary convection. These cells had535

a relatively short lifespan, with approximately 70% of the cells lasting less than 45 minutes (see536

Fig. 3a). CSAPR2 RHI scans provide both enhanced temporal and vertical spatial resolution of a537

subset of the convective cells during TRACER.538

However, the CSAPR2 RHI data had limitations due to the inability to sample all convective539

cells simultaneously. The automated CSAPR2 cell tracking strategy (Lamer et al. 2023) allowed540

sampling of only one target cell at a time, leading to a decision of whether to continue scanning541

the same cell in the next scan bundle or switch to another cell in the domain. As a result, the542

automated cell tracking algorithm often abandoned a cell midway in its life cycle if another target543

cell was identified according to the automated set of rules. This inconsistency in cell tracking,544

coupled with the physical limitation of CSAPR2’s smaller maximum unambiguous radar range,545

resulted in a much smaller dataset of transitioning cells available for this analysis. Consequently,546

we compare vertical profiles of maximum ZH, ZDR, and KDP instead of comparing the evolution547

of time series of these radar variables.548

There were at least two notable differences between the KHGX and CSAPR2 composite reflec-549

tivity (Fig. 12a, respectively). The first difference was related to the air mass regime with the550

maximum composite reflectivity value. Although the CSAPR2 near-surface composite mean was551

similar across all three air masses, the most significant disparity occurred between 2500 and 3000552

m above radar level (ARL), where the continental cells reached the largest value. The second553

difference was the larger absolute maximum value of the mean composite reflectivity in CSAPR2554

continental cells (∼55 dBZ), compared to the maximum value in the KHGX data (∼49 dBZ).555

This is likely due to the limited CSAPR2 sample size and/or differences in resolution or radar556

frequency. Direct comparison of composite reflectivity between the CSAPR2 vertical profiles and557

the NEXRAD time series (see Fig. 11b) is unfair because of the disparities in spatiotemporal res-558

olution and constraints introduced by partial sampling of the cell life cycle by CSAPR2. However,559

in qualitative terms, the composite reflectivity in continental cells, as observed in the NEXRAD560

time series, never exceeded that of maritime cells by more than 1 dBZ. The most likely explanation561

for this discrepancy is the limited sample size of continental cells in CSAPR2 data (refer cell count562
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distribution in Fig. 12d) or the coarser vertical resolution of gridded NEXRAD data. To assess563

the extent of variability in maximum cell composite reflectivity, we examined three example cases564

of deep convection (one in each air mass regime) that were scanned by both radars. While the565

CSAPR2 and KHGX reflectivity profiles generally followed the same overall trend, differences in566

excess of 10 dBZ in reflectivity values were observed at times (Fig. 13). Except for a few RHI567

sweeps in the continental cell, the CSAPR2 reflectivity values were consistently higher than those568

from KHGX. Additionally, a considerable RHI to RHI variability was evident in all three exam-569

ples, capturing the fast temporal-scale fluctuations in cell reflectivity and fine-scale microphysical570

processes as they evolve in deep convective updrafts, which would otherwise have been missed in571

KHGX PPI volumetric updates.572

The analysis of composite mean ZDR and KDP vertical profiles revealed significant microphysical573

differences among storms across different air masses. In continental and SBF cells, the peak ZDR574

reached 5 dB, indicating the presence of large oblate raindrops (Fig. 12b). The peak ZDR values,575

however, occurred at different altitudes in continental cells (around 1000 m ARL) compared to SBF576

cells (around 500 m ARL). A sharp decrease in near-surface ZDR below these peaks in both air mass577

regimes suggests possible raindrop breakup or evaporation affecting the drop size distribution close578

to the ground. On the other hand, the ZDR profile in maritime cells remained more constant with579

height (around 3 dB between 0 and 3000 m ARL), which could be attributed to a lower evaporation580

rate in the humid maritime boundary layer. Using a 1-dB threshold to identify the vertical extent581

of ZDR columns, cells within the continental air mass exhibited the tallest ZDR columns, extending582

up to an altitude of 7 km ARL, at least 1 km higher than the maritime and SBF storms.583

For KDP profiles, maritime and SBF cells showed overlap throughout, reaching a maximum of584

around 1.9 deg km−1 at approximately 3000 m ARL, with slightly higher near-surface KDP values585

in SBF cells. The KDP profile for continental cells followed a similar trend to the other two air586

mass regimes at upper levels before significantly deviating below 1500 m ARL. The KDP profile for587

continental cells exhibited a sudden spike at lower altitudes, with the peak value reaching around588

1.8 deg km−1 around 500 m ARL. This may suggest that precipitation in continental storms was589

characterized by a higher concentration of smaller raindrops. However, the limited sample size of590

continental cells below 500 m ARL could have skewed the ZDR and KDP values towards higher591

values at low levels.592
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Fig. 12. Composite mean vertical profiles of (a) Maximum reflectivity, (b) Maximum ZDR, and (c) Maximum

integrated KDP for cells observed by CSAPR2. The numbers within parentheses in (a), (b), and (c) represent the

cell count for each air mass regime. A minimum of five samples were used for averaging at each vertical level.

(d) Cell count per air mass for each deployment, for cells used in vertical profile extraction.
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Fig. 13. Evolution of maximum radar reflectivity observed through KHGX PPI volume scans (solid line with

markers; red color) and CSAPR2 RHI scans (scatter points) for three example cells that initiated in (a) continental

air mass, (b) at the SBF boundary, and (c) maritime air mass. CSAPR2’s faster RHI scans enabled retrieval of

multiple maximum reflectivity values along different cross-sections within the same convective cell, resulting in

multiple CSAPR2 sweeps between two KHGX PPI scans.
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d. Statistical significance of environmental conditions for cell attributes602

The analysis presented heretofore explored the differences in thermodynamic environments and603

cell characteristics independently of each other. Now, our focus shifts to understanding how the604

continental and maritime air mass regimes may affect convective cells. In order to test whether605

continental or maritime cells experienced significantly different environmental conditions, we606

assigned the closest radiosonde in time and space to each cell, so long as it was in the same607

air mass. Only radiosondes launched within a 2-hour window before or a 1-hour window hour608

after CI were included. To assess if a two-hour time window preceding CI is representative609

of the thermodynamic characteristics of the storm-inflow environment, we computed the average610

difference in potential temperature (𝜃) and mixing ratio (qv) profiles between consecutive soundings611

(launched 1.5 hours apart) from fixed ARM sites, provided they were in the same airmass. We612

found that for the maritime airmass (sea or bay breeze), changes in 𝜃 and qv remained within ±1613

K and ±1 g kg−1 across all vertical levels (not shown). However, continental soundings exhibited614

greater 𝜃 deviations below 2 km AGL (∼ 2 K change in the mean value), while qv changes were615

confined to the ±1 g kg−1 range. Limiting the time window to ±1 hour around CI would likely yield616

𝜃 and qv changes about two-thirds of those mentioned above. However, the reduction in the sample617

size of unique paired soundings to cells, and consequent potential impact on the robustness of the618

statistical tests, outweighs the benefits of capturing a more precise environmental representation619

using a ±1 hour time window.620

We paired the environmental profile data for each category–transitioning cells (63 maritime621

and 41 continental) and shallow cells (302 maritime and 194 continental). However, since some622

cells shared the same radiosonde profile based on their initiation time and distance, we ensured623

independence among samples by performing significance tests only for the unique radiosonde624

profiles. For transitioning cells, the unique set of profiles reduced to 35 in the maritime regime625

and 21 in the continental regime. For shallow cells, we ended up with 32 and 66 unique profiles626

for continental and maritime regimes, respectively. Next, we employed the bootstrap hypothesis627

testing method (Dwivedi et al. 2017) to determine if the means of continental and maritime628

environmental variables were significantly different. The boxplot distributions of statistically629

significant environmental variables are presented in Fig. 14. When considering transitioning cells,630

we identified at least five variables (ML ECAPE, PBL depth, ML LCL, ML LFC, and diluted631
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EL) with significantly different means between maritime and continental air masses. Diluted EL632

is defined as the altitude where a lifted parcel loses its buoyancy and becomes cooler than the633

environmental temperature, factoring in the entrainment effect. The maritime air mass exhibited634

larger values for ML ECAPE and diluted EL, while continental air mass had higher values for635

the remaining boundary layer-related variables. For shallow cells, only TPW was found to be636

statistically significant, with larger average value in the maritime air mass.637

Although there were significant differences in thermodynamic environments across the SBF,638

transitioning cells primarily differed in average cell area and to some extent in average composite639

reflectivity (Figs. 11f and b, respectively), while for shallow cells, the most pronounced distinction640

was observed in the average composite reflectivity (Fig. 11a). When viewed in conjunction641

with the results presented in Fig. 14, it appears that TPW was the most influential variable for642

differences in average composite reflectivity for shallow cells. However, we did not find an obvious643

functional form of a relationship between TPW and average cell reflectivity in shallow cells.644

Similarly, for transitioning cells, there was no obvious functional form that fit the average cell area645

and the significant environmental variables. However, these results suggest that environmental646

heterogeneity across the SBF played a role in favoring maritime cells to attain larger reflectivity in647

shallow cells and larger cell area and composite reflectivity in transitioning cells.648
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Transitioning
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Transitioning

Transitioning

Transitioning

Shallow

Fig. 14. Boxplot comparison of environmental variables with statistically significant difference in mean values

between maritime (blue; MT) and continental (orange; C) air masses. Panels (a–e) correspond to variables that

had significant differences for transitioning cells, and panel (f) for shallow cells. Mean and median values of

each variable are indicated by a white triangle and a solid black line within each boxplot, respectively.
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4. Summary and Discussion653

This research was conducted during the DOE TRACER field campaign, aimed to improve our654

understanding of how meteorological and aerosol environments influence the evolution of deep655

convective clouds. The primary objective of this study was to quantify the spatiotemporal variability656

in thermodynamic and kinematic environments, and convective cell characteristics across sea- and657

bay-breeze fronts in the Houston, Texas region from June to September 2022. We analyzed a total658

of 177 radiosonde profiles collected at different locations and/or times, spanning over 15 different659

deployment days. We used these profiles to differentiate the mean composite vertical profiles of660

temperature and moisture during early and late afternoon hours and to establish representative661

environmental conditions for convection in both continental and maritime air masses.662

Throughout the analysis period, we tracked more than 2300 unique cells from KHGX data, from663

which 501 shallow and 162 transitioning cells were selected to study the temporal evolution of664

composite reflectivity and maximum 20-dBZ echo-top height for convection that initiated within665

continental and maritime air masses or along the sea-breeze front. Furthermore, we identified a666

total of 49 isolated deep convective clouds from the CSAPR2 cell tracking database to compare the667

vertical profiles of ZH, ZDR, and KDP in different air masses. Finally, to test how the environmental668

differences across air masses influences cell attributes, we subsampled the cell track dataset to669

select 63 maritime and 41 continental transitioning cells. The main findings from our analysis are:670

(i) Convection associated with the inland propagation of the SBF typically peaked between 1400671

and 1500 LT. Over 70% of the total tracked cells between 1100 and 1900 LT had a lifetime672

of 45 minutes or less. Specifically, shallow cells had a median lifetime of 24 minutes, while673

transitioning cells had a median lifetime of 49 minutes. Cells initiating between 1000 and674

1200 LT demonstrated the maximum cell area and 20-dBZ echo-top height (Fig. 3). Two major675

CI hotspots were observed (Fig. 5): one located directly to the east of downtown Houston676

(and the AMF1 site) and the other southwest of Houston (directly above the ANC site).677

(ii) The composite environmental profile for the TAMU site was found to be the driest in the678

upper boundary layer and lower free troposphere (950–700 hPa layer) in the early afternoon679

(maritime air mass) and mid-levels (600–400 hPa layer) in the late afternoon (continental air680
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mass), respectively (Fig. 6). Additionally, a drier boundary layer in the late afternoon led to681

lower ML CAPE in the continental air mass.682

(iii) The composite reflectivity of shallow and transitioning clouds followed a consistent temporal683

trend across air masses (Fig. 11a and b). Shallow clouds experienced the largest difference in684

mean composite reflectivity, with cells initiating close to SBF having the highest reflectivity685

values (41–44 dBZ), followed by maritime (36–40 dBZ) and continental (30–35 dBZ) cells.686

The distinction was less clear for transitioning cells, but still followed a similar pattern. The687

time series of mean composite 20-dBZ echo-top height exhibited significant overlap across688

air masses for both shallow and transitioning clouds (Fig. 11c and d).689

(iv) Composite reflectivity of transitioning cells from CSAPR2 vertical profiles was found to be690

slightly larger than that from NEXRAD. Additionally, maritime cells in CSAPR2 data were691

qualitatively weaker, when comparing the reflectivity and differential reflectivity profiles692

(Fig. 12)693

(v) Five environmental variables exhibited statistically significant differences in mean values694

between maritime and continental environments associated with transitioning cells. These695

variables include ML ECAPE, ML LCL, ML LFC, diluted EL, and PBL depth (Fig. 14).696

Among shallow cells, TPW was the sole environmental variable with a significant difference697

between maritime and continental air masses.698

a. Implications:699

Findings (iii) and (iv) suggest that variability in total moisture content between maritime and700

continental air masses may be the predominant meteorological factor influencing the bulk (warm701

rain) microphysical processes in shallow clouds. For transitioning cells, both lateral entrainment702

(and thus buoyancy dilution) and boundary layer thermodynamics (LCL/LFC height, PBL depth)703

may control the overall evolution of clouds. The additional complexity of mixed and ice-phase704

microphysical processes in transitioning cells, combined with coarse spatiotemporal resolution of705

NEXRAD data may have masked actual differences in composite reflectivity between maritime706

and continental air masses. However, the evolution of cell area of transitioning cells was notably707

different across the two air mass regimes. This finding is consistent with the analysis of Marquis708
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et al. (2023) wherein the authors found circumstantial evidence of cell area being positively709

correlated with LCL height and boundary layer depth for CI in Argentina during the CACTI field710

campaign. This result also reaffirms that relying solely on CAPE as a predictor of deep convection711

behavior may not be sufficient (Zipser 2003; Sherwood et al. 2004; Robinson et al. 2008). High-712

resolution large-eddy simulations have highlighted that additional factors play crucial roles in713

the transition from shallow-to-deep convection (Morrison et al. 2022). Sub-cloud ascent, which714

represents overall thermodynamic forcing, along with environmental free-tropospheric humidity715

and dynamic entrainment, are also known to influence the likelihood of this transition. These716

factors should be taken into account when understanding the behavior of deep convective clouds.717

The minimal contrast observed in mean 20-dBZ echo-top height values across different air718

masses and cloud types raises several possibilities. First, it suggests that the 20-dBZ echo-top719

height may not be the best proxy for determining convection intensity. Alternatively, it could720

indicate that transitioning cells were actually indistinguishable in intensity across different air721

masses. Another plausible explanation is that the coarse temporal resolution of KHGX radar was722

insufficient to resolve the variability in thunderstorm intensity acting at shorter time scales, as723

evident in CSAPR2 data (Fig. 13).724

b. Caveats:725

SBF cells exhibited the strongest shallow convection, and the longest track duration (not shown),726

which might be attributed to the reinforced updraft caused by surface convergence and cold727

pool-updraft interactions (Houston and Wilhelmson 2011), providing additional forcing for the728

parcel ascent to trigger deep convection. However, we avoided pairing the SBF cells with an729

environmental profile due to the uncertainty in determining which sounding, on either side of the730

SBF, most accurately represents the storm inflow along the convergence zone at the leading edge731

of the SBF.732

The discrepancy between the air mass with maximum composite reflectivity values using733

CSAPR2 and KHGX data is likely due to small scale spatiotemporal perturbations in cloud micro-734

physical processes. These perturbations can be easily missed by slower KHGX updates or lost in735

the coarse PPI volume resolution. Additionally, the limited sample size of isolated deep convective736

cells by CSAPR2 is insufficient for generalizing our findings. Future efforts should focus on con-737
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sistently collecting the full lifecycle of dual-pol radar variables in isolated deep convection across738

different air mass regimes to obtain statistically robust samples and identify potential differences739

in storm microphysical characteristics and evolution.740

The identification of the parent mesoscale air mass for radiosonde launches and convective cell741

initiation involved some subjectivity. The data from weather radars, GOES-16 satellite, and surface742

meteorological stations sometimes failed to capture subtle changes in frontal boundary location or743

associated meteorological variables during sea-breeze front passage. Additionally, the sea breeze744

was often mixed with outflow from current or previous convective cells, as well as the bay breeze745

from the Galveston Bay region. Despite these challenges, we do not expect significant changes in746

the overall conclusions drawn from our results.747

c. Conclusions and future efforts:748

The main findings of this study support our initial hypothesis that maritime convection generally749

exhibits larger composite reflectivity (more pronounced in shallow cells and less so in transitioning750

cells) and wider cells (exclusively in transitioning cells) in comparison to continental convection.751

However, the relatively limited contrast in 20-dBZ echo-top height across different air masses752

and convection types serves as a reminder to exercise caution when assessing convective inten-753

sity based on radar-inferred echo-top heights. Nonetheless, many questions remain unanswered,754

including the mechanisms governing the responses of shallow and transitioning cells to the air755

mass heterogeneities, the extent to which radar reflectivity-based metrics capture microphysical756

evolution rather than updraft intensity, and the roles of secondary shallow circulations such as cold757

pools, differential radiative heating, and urban heat island circulations in promoting or suppressing758

convection within each air mass.759

Additionally, our team’s analysis of aerosol measurements has revealed substantial gradients in760

aerosol concentration and remarkable variability in aerosol size distribution across the air mass761

boundaries in the greater Houston region, as detailed in a companion paper. In future work,762

we plan to investigate the contribution of aerosols to microphysical differences observed in the763

shallow and transitioning cells and also the deeper ZDR columns in continental cells indicated by764

CSAPR2. We intend to perform controlled idealized numerical experiments, considering both the765

observed spatial variability in thermodynamic environments and the vertical variability in aerosol766
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concentration in order to understand the pathways involved in differential response of convection767

across various air mass regimes.768
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